

?

Analyse multicritère : Introduction

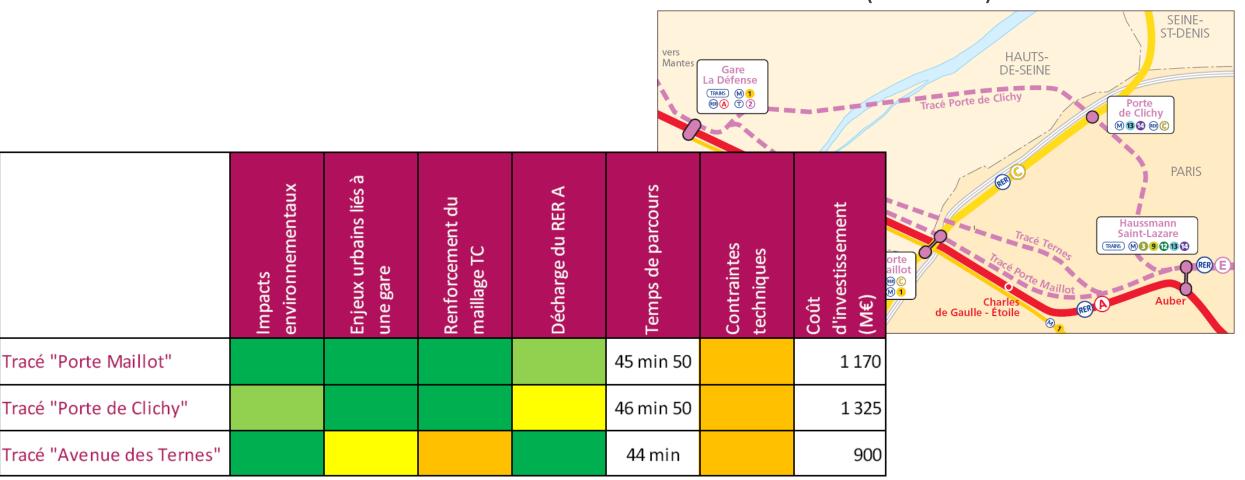
Karim Lidouh (Karim.Lidouh@ulb.ac.be)

Sabine Vanhuysse (svhuysse@ulb.ac.be)

http://cafesig.ulb.ac.be

- Les décisions que l'on prend dépendent rarement d'un seul facteur
- D'autant plus vrai dans un contexte géographique car :
 - Situations existantes
 - Plusieurs acteurs
 - Plusieurs intérêts conflictuels

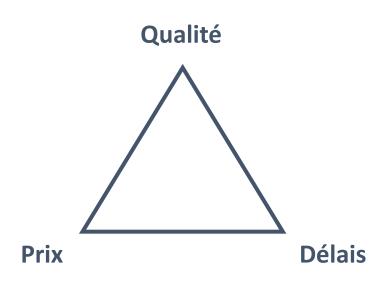
- Plusieurs éléments à prendre en compte
 - Alternatives, options, solutions (objets de l'analyse)
 - Contraintes (éléments binaires)
 - Objectifs (critères de jugement)


Cas de la RATP : Extension de la ligne de RER E à Paris

• Identification des tracés possibles (limités à trois)

Cas de la RATP : Extension de la ligne de RER E à Paris

• Evaluation des trois tracés en utilisant une méthode multicritère (ELECTRE)

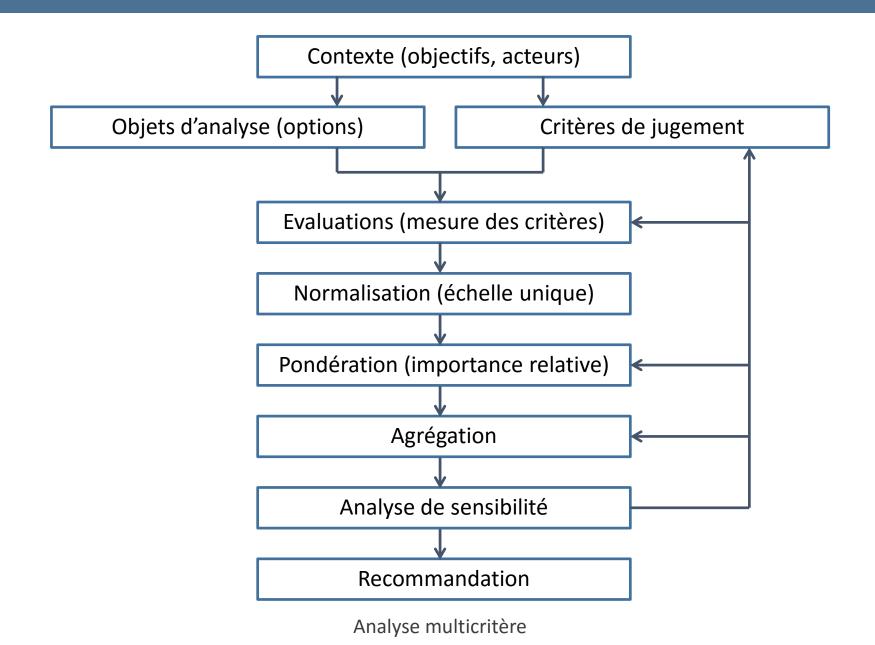

Paradigme uni-critère

- Un critère unique synthétise toutes les caractéristiques du problème
- Les autres critères présentent déjà des niveaux acceptables
- Permet de trouver une solution optimale satisfaisant ce critère unique

• Paradigme multicritère

- Plusieurs critères considérés conflictuels
- Une solution satisfaisant tous les critères n'est possible que dans de rares cas

Recherche de compromis



Choisissez en deux...

• Lorsque l'existence d'une solution idéale n'est pas certaine, il devient important de déterminer l'importance relative de chaque critère

Processus de décision

Familles de méthodes multicritères

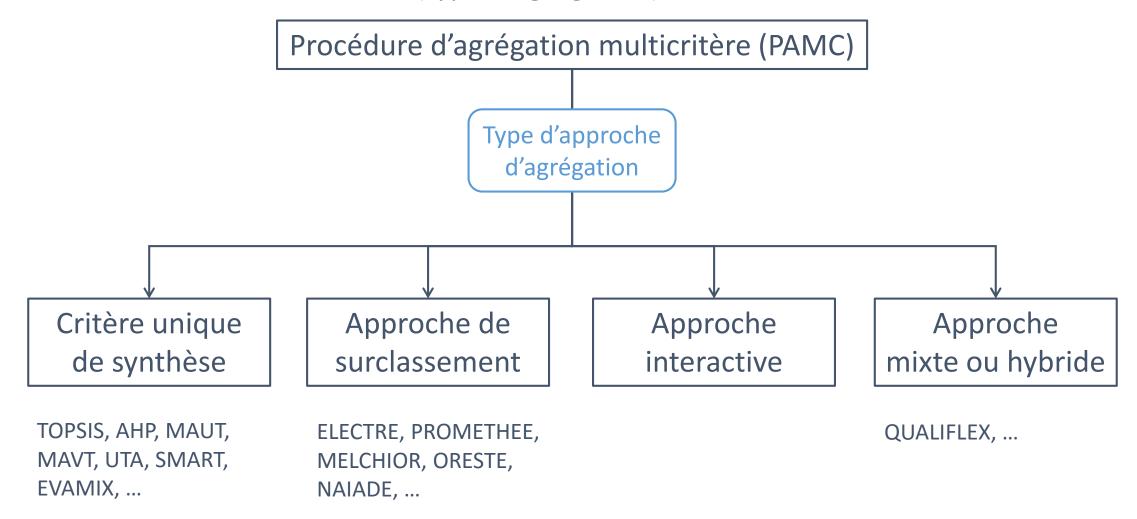
Méthodes élémentaires

• Somme pondérée, méthode lexicographique, Maximin, ...

Méthodes à critère unique de synthèse

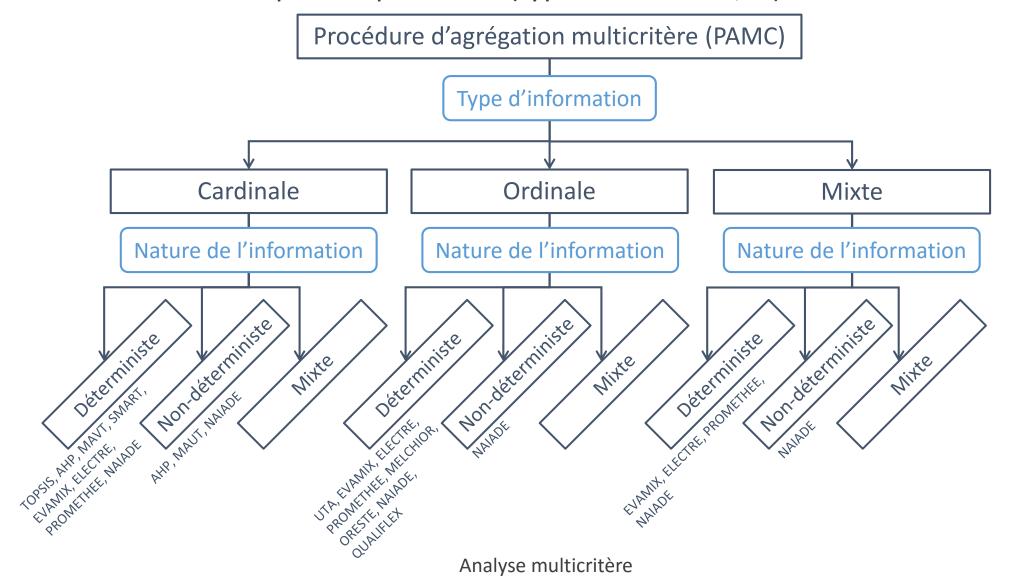
- Agrègent plusieurs critères en un seul servant à prendre la décision
- Exemples: TOPSIS, AHP, MAUT, MAVT, UTA, SMART, ...

Méthodes de surclassement

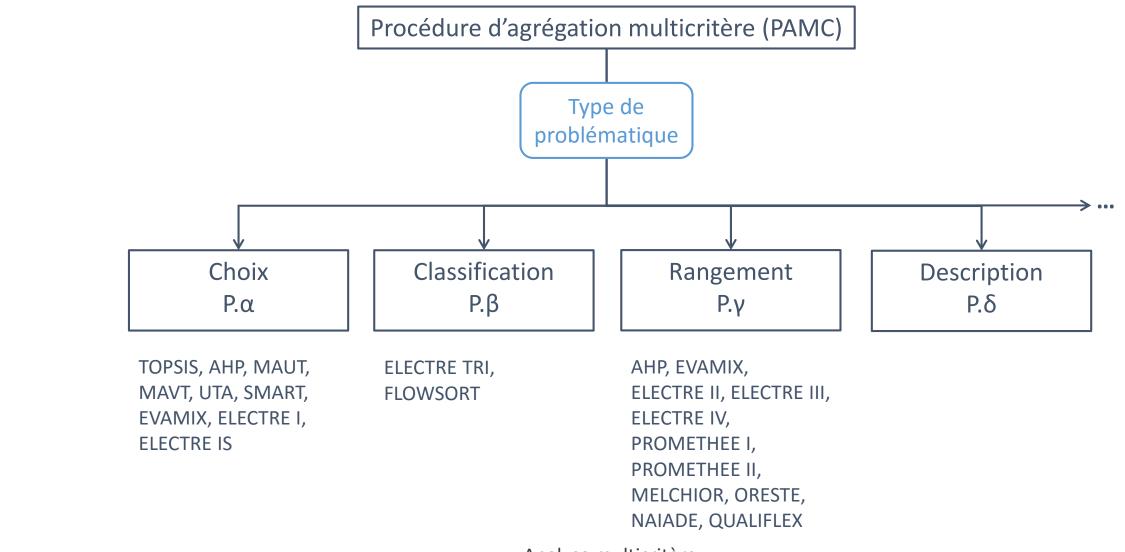

- Comparent les alternatives paire par paire
- Exemples : ELECTRE, PROMETHEE, ...

Méthodes interactives ou hybrides

- Méthodes itératives avec intervention du décideur à plusieurs reprises
- Recherches locales, essais et erreurs


Classification des méthodes multicritères

• Sur base de leur fonctionnement (type d'agrégation) :


Classification des méthodes multicritères

• Sur base des caractéristiques du problème (type de données, ...) :

Classification des méthodes multicritères

• Sur base de la problématique à résoudre (type de décision) :

Deux types de problèmes spatiaux

Problèmes discrets

- Le nombre de possibilités à analyser est limité
 - Par ex. : quelques parcelles, des points de mesures
- Pour chaque possibilité, les données d'évaluation sont connues (données attribut, ...)
- Des méthodes lourdes (faisant beaucoup de comparaisons) sont utilisables

Problèmes continus

- Le territoire à analyser est continu ou le nombre de possibilités est très élevé
 - Par ex. : Tous les pixels d'une carte, d'une zone de travail
- Les données d'évaluation sont présentes sous forme de couches ou doivent être calculées
- Le temps de calcul devient trop important avec certaines méthodes

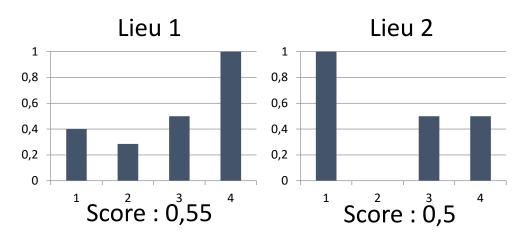
Méthode proposée : Somme pondérée

Somme pondérée avec contraintes

- Deux types de variables (ou objectifs) :
 - Facteurs (ou attributs) : Variables continues qui renforcent ou entravent l'adéquation d'une décision (mesurée de façon continue) Exemple : plus proche d'une route, loin des frontières
 - Contraintes : Variables binaires qui limitent spatialement la décision Exemple : pas dans les zones protégées
- Poids : Estimation de l'importance relative de chacun des facteurs par rapport aux autres
- Scores : Combinaison linéaire des valeurs des facteurs (x_i) pondérées par des poids (w_i) et multiplié par le produit des contraintes (c_i)

$$S = \sum_{i} w_{i} x_{i} * \prod_{j} c_{j}$$

Méthode proposée : Somme pondérée


Avantages :

- Simplicité : la simplicité de la méthode permet de l'expliquer facilement à un décideur.
- Rapidité d'utilisation : les opérations à réaliser n'étant pas complexes, cela en fait l'une des méthodes les plus faciles à implémenter à l'aide de scripts, modules, ... Appliquer cette méthode sur de très grands sets de données entraîne peu de coûts en performances.

• Inconvénients :

• **Problème de compensation** : les échelles étant toutes converties linéairement, cela engendre un effet de compensation au sein des profils.

	Coût	Surface	Accessibilité	Adéquation
Lieu 1	650	40	Mauvais	Très Bon
Lieu 2	500	28	Mauvais	Bon
•••	•••	•••	•••	•••

Etape de normalisation

• Afin de pouvoir calculer une combinaison linéaire des facteurs il est nécessaire de convertir ces derniers dans des échelles comparables en amplitude et direction

Tableau de facteurs (attributs) → Tableau de performances (critères)

- Deux échelles de valeurs possibles :
 - Locale : sur base des valeurs observées localement
 - Globale : sur base des valeurs théoriquement possibles globalement
- Difficultés à surmonter :
 - **Problèmes de signe :** Expression des variables avec le même signe (même si elles renforcent ou entravent le processus)
 - **Différentes échelles de mesure :** car les différentes variables s'expriment rarement dans les mêmes unités

Etape de normalisation

Opérateurs/Fonctions:

• Etirement linéaire entre minimum et maximum :

Pour un critère à maximiser :
$$x_i = \frac{R_i - R_{min}}{R_{max} - R_{min}}$$
 (sinon $x_i = \frac{R_{max} - R_i}{R_{max} - R_{min}}$)

Attention! Très affecté par les valeurs extrêmes!

	D route (R_i)
Lieu 1	4,5
Lieu 2	2
Lieu 3	10
Lieu 4	8,5
Lieu 5	1,5

$$R_{min} = 1,5$$

$$R_{max} = 10$$

	D route (x_i)
Lieu 1	0,35
Lieu 2	0,06
Lieu 3	1
Lieu 4	0,82
Lieu 5	0

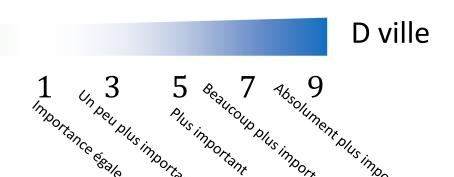
• Variable centrée et réduite :

$$x_i = \frac{R_i - \bar{R}}{\sigma_R}$$

Standardisation des variables qui suppose une distribution normale des valeurs

- Diverses techniques participatives existent pour quantifier l'importance relative des facteurs :
 - Enquêtes
 - Discussions
 - Delphi
 - Cartes de Simos
 - ...
- Ces pondérations dépendront :
 - De l'importance des critères
 - De l'amplitude de la variation du critère entre les options évaluées (degré de discrimination)

Méthode de Saaty (« Analytical Hierarchy Process » ou AHP)


- Somme des poids : $\sum_i w_i = 1$
- Choix des poids en comparant les critères 2 à 2
- Exemple d'échelle de comparaison :

D route				
	1	<u>1</u>	1	1
	9	7	5	3

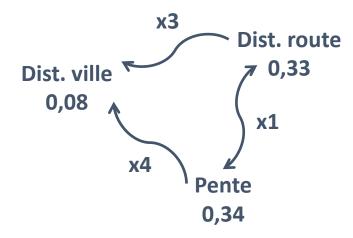
Tableau de comparaisons :

	D route	D ville	Pente	Taille villag	D parc
D route	1				
D ville	1/3	1			
Pente	1	4	1		
Taille vill	1/7	2	1/7	1	
D parc	1/2	2	1/2	4	1

• Calculer le premier vecteur propre normalisé de la matrice

Approximation (évitant de devoir calculer les valeurs et vecteurs propres) :

• Somme par colonne :


	D route	D ville	Pente	Taille villag	D parc
D route	1	3	1	7	2
D ville	1/3	1	1/4	1/2	1/2
Pente	1	4	1	7	2
Taille vill	1/7	2	1/7	1	1/4
D parc	1/2	2	1/2	4	1
Total	2,98	12	2,89	19,5	5,75

• Division de chaque cellule par le total de sa colonne et moyenne des lignes :

	D route	D ville	Pente	Taille villag	D parc	Poids
D route	0,34	0,25	0,35	0,36	0,35	0,33
D ville	0,11	0,08	0,09	0,03	0,09	0,08
Pente	0,34	0,33	0,35 0,36 0,35			0,34
Taille vill	0,05	0,17	0,05	0,05	0,04	0,07
D parc	0,17	0,17	0,17	0,21	0,17	0,18
Total	1	1	1	1	1	1

Consistance des poids obtenus :

	D route	D ville	Pente
D route	1	3	1
D ville	1/3	1	1/4
Pente	1	4	1

Critères	Poids
Dist. route	0,33
Dist. ville	0,08
Pente	0,34
Taille village	0,07
Dist. parc	0,18
Total	1

• Remarque : la méthode AHP dispose d'une mesure permettant de jauger la consistance des réponses obtenues du décideur (appelée « Indice de Consistance »)

Impact du nombre de critères

Un nombre élevé de critère peut rendre le processus difficile

• Le nombre de comparaisons croit exponentiellement :

$$n \text{ critères } \rightarrow \frac{n(n-1)}{2} \text{ comparaisons}$$

 Les comparaisons à faire ne sont pas toujours évidentes (impliquent des thèmes très différents)

Exemple : Indice de Performance Environnementale

- 20 indicateurs → 190 comparaisons
- Solution : Regrouper les indicateurs en catégories et établir une hiérarchie
 - Comparer les critères uniquement au sein de leur catégorie
 - Comparer les catégories entre elles
 - Les poids globaux s'obtiennent en multipliant entre eux les poids de chaque niveau de la hiérarchie

Hiérarchies de critères

ENVIRONMENTAL HEALTH

Health Impacts

Air Quality

Water and Sanitation

ECOSYSTEM VITALITY

Water Resources

Agriculture

Forests

Fisheries

Biodiversity and Habitat

Climate and Energy

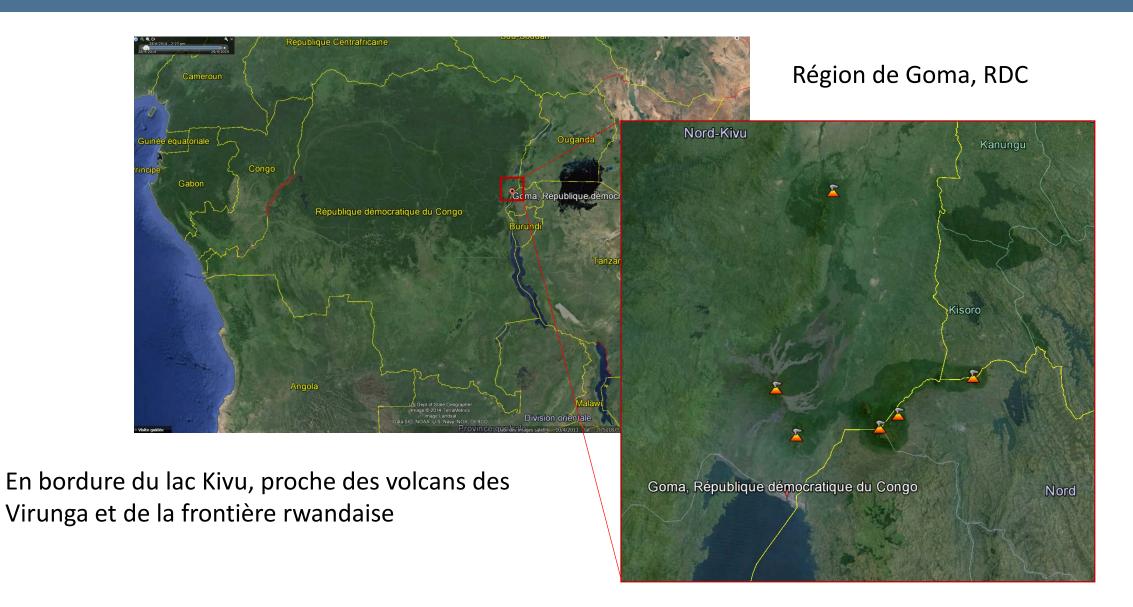
The 2014 EPI Framework includes 9 issues and 20 indicators. Access to Electricity is not included in the figure because it is not used to calculate country scores.

Réflexions

- L'analyse multicritère permet de combiner variables **quantitatives** et **qualitatives** (en fonction des méthodes utilisées)
- Il est important de réfléchir au **seuil minimum acceptable** sur chaque variable (pour ajouter des contraintes si nécessaire)
- Plusieurs problèmes peuvent ne pas être gérés par les méthodes choisies tels que l'incertitude, l'erreur, les données manquantes ou la variation temporelle (qui doivent être gérés séparément)
- On dénombre également plusieurs principes qui doivent être vérifiés dont celui d'indépendance préférentielle (séparabilité) qui assure que toutes les décisions soient cohérentes toutes choses égales par ailleurs
- Enfin il faut **limiter le nombre de critères** et s'assurer que ces derniers représentent un ensemble cohérent

Erreurs et sensibilités

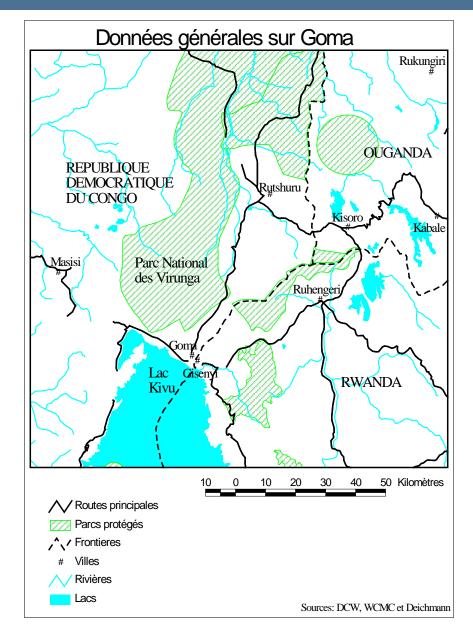
• Les erreurs et incertitudes dans les données de départ peuvent fortement influencer les résultats

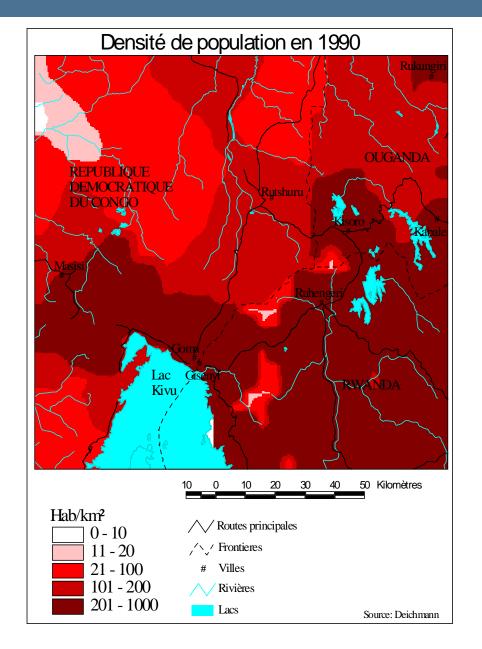

• Si une estimation précise de l'erreur n'est pas disponible, il est possible d'utiliser des marges d'erreur approximatives

- Une **analyse de sensibilité** permet d'évaluer la robustesse des résultats à des changements de valeurs :
 - des variables
 - des pondérations

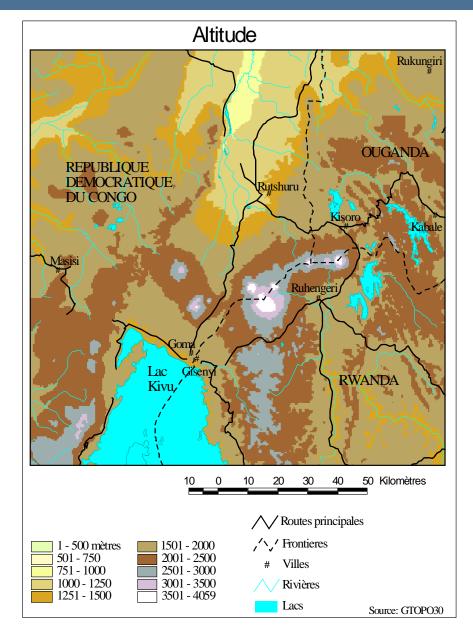
Exemple : Implantation d'un camp de réfugiés

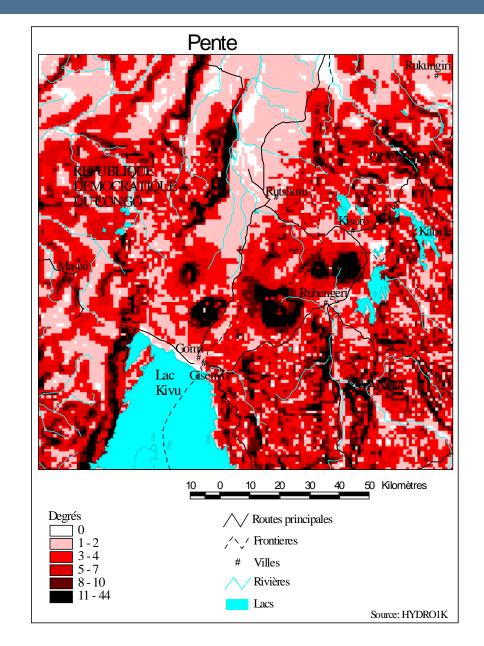
- Objectif: Méthode d'aide à la décision visant à choisir les emplacements les plus adéquats pour l'implantation de camps de réfugiés
 - Prenant en compte une série de variables hiérarchisées selon leur importance (d'après plusieurs ONG et la littérature)
 - Adaptable en fonction du scénario
 - priorité à l'urgence
 - priorité à la protection de l'environnement (relocalisation)
 - Développée sur une petite zone, mais applicable à des zones étendues
 - Utilisant des données géographiques existantes
- Etude de cas sur une petite zone: Goma, République Démocratique du Congo (Nord-Kivu)
- Problématique: afflux massif de réfugiés en provenance du Rwanda (1994, environ 650 000 réfugiés)

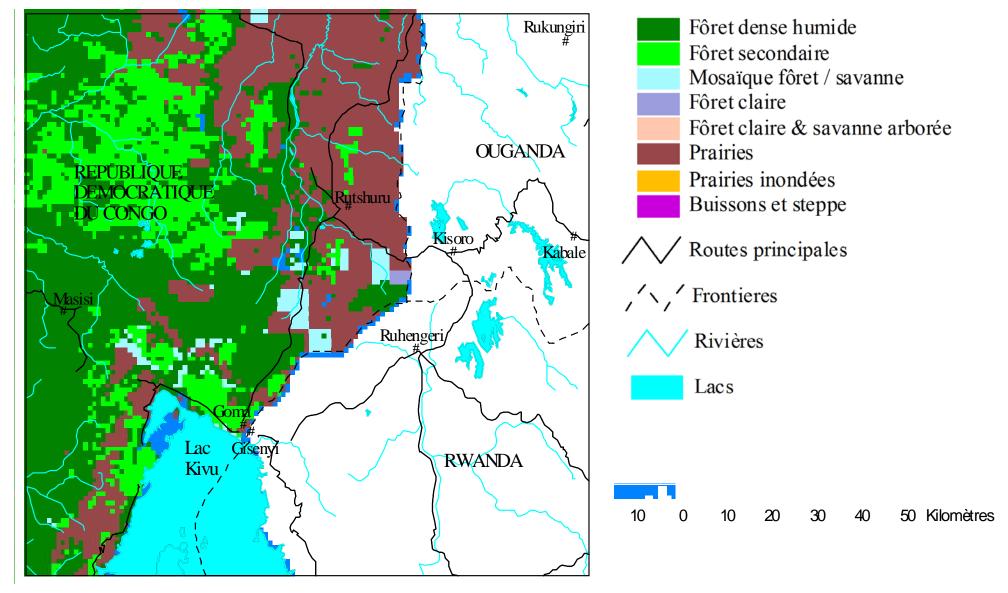

Zone d'étude



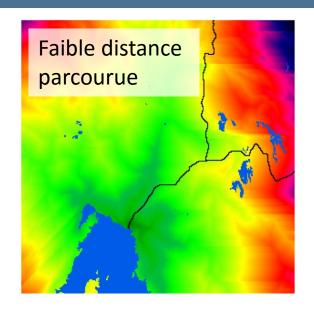
Variables prises en compte dans l'analyse

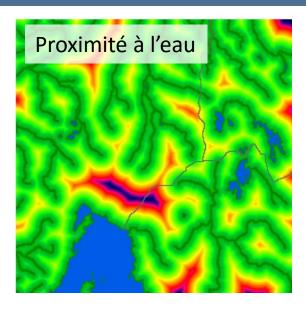

Variables	C/F	Données	Source	Echelle
Localisation exclue dans le pays d'origine des réfugiés	С	Pays	DCW	1:1000000
Localisation exclue dans les lacs ou sur les îles	С	Lacs	DCW	1:1000000
Localisation exclue à moins de 5000 m des frontières	С	Frontières	DCW	1:1000000
Localisation exclue à plus de 2500 m d'altitude	С	Relief	GTOPO30	30 " (± 925 m)
Localisation exclue pour les pentes > à 5°	С	Pente	HYDRO1K	1000 m
Localisation exclue dans les parcs protégés	С	Parcs protégés	WCMC	Variable
Minimiser les déplacements de personnes selon leur origine	F	Déplacement des réfugiés		
Proximité de l'approvisionnement en eau	F	Rivières et lacs	DCW	1:1000000
Eloignement des zones de conflit potentiel	F	Frontières	DCW	1:1000000
Altitude à minimiser pour diminuer les écarts climatiques et faciliter l'accès au site	F	Relief	GTOPO30	30 " (± 925 m)
Faible pour limiter l'érosion	F	Pente	HYDRO1K	
Proximité aux routes pour simplifier les contraintes logistiques	F	Routes	DCW	1:1000000
Faible densité de population pour limiter les conflits avec la population locale	F	Densité de population	UNEP/GRID – NCGIA	2.5 '
Eloignement des villes pour limiter les conflits avec la population locale	F	Villes	Deichmann	1:1000000
Proximité d'une végétation boisée	F	Occupation du sol	Land Cover	1 000 m
Eloignement des parcs protégés	F	Parcs protégés	WCMC	Variable

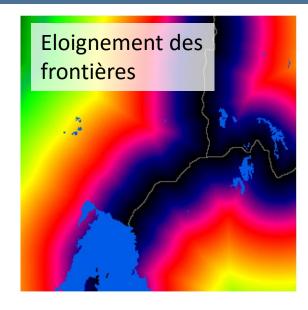

Données

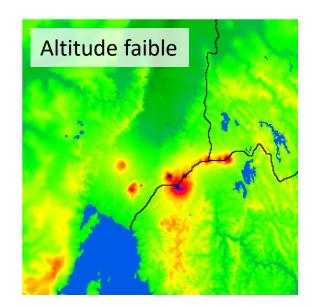


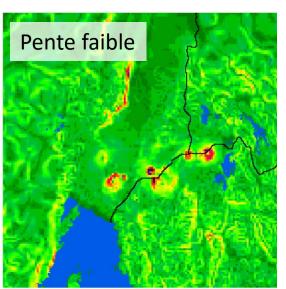
Données

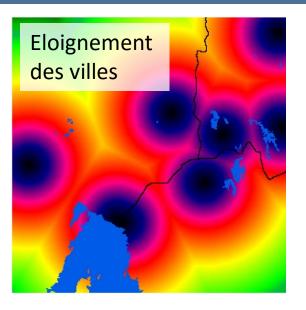

Données

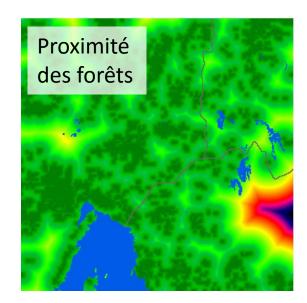


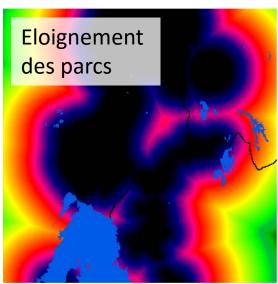

Création des variables (images)


- Traitements appliqués aux données
 - Homogénéisation des systèmes de coordonnées
 - Découpage géographique selon les limites de la zone d'étude
 - Transformation des données vectorielles en images
 - Ré-échantillonnage des images à une résolution identique (450 m)
 - Création des images servant à l'analyse (10 facteurs et 6 contraintes)
- Rappel : 2 types de variables
 - Facteurs (ou attributs) : Variables continues qui renforcent ou entravent l'adéquation d'une décision (mesurée de façon continue) Exemple : plus proche d'une route, loin des frontières
 - Contraintes: Variables binaires qui limitent spatialement la décision Exemple: pas dans les zones protégées


Facteurs







Facteurs

Analyse multicritère

Contraintes

Analyse multicritère

Pondération des facteurs

Pondération des facteurs selon leur importance relative dans le scénario envisage

	Dist.		Eau		Front	•	Altitu	ıde	Pente	e	Route	es	Pop.		Villes		Forêts		Parcs
Dist.	>	<																	
Eau	1/3	3		X															
Front.	1/3	3	1/3	1/3	>	(
Altitude	1/7	1	1/7	1/7	1/5	1/5)	X											
Pente	1/7	1	1/7	1/7	1/5	1/5	3	1)	X									
Routes	1/3	3	1/3	1/3	1/3	1/3	3	3	3	3)	Κ							
Pop.	1/7	1/3	1/7	1/5	1/7	1/5	1/5	1/3	1/5	1/3	1/7	1/5		X					
Villes	1/7	1/3	1/7	1/5	1/7	1/5	1/5	1/3	1/5	1/3	1/7	1/5	3	3	>	<			
Forêts	1/7	1	1/7	1/5	1/7	1/5	1/5	1/3	1/5	1/3	1/7	1/5	1	3	1	3	х		
Parcs	1/7	3	1/7	1/3	1/5	1/3	1/3	1	1/3	1	1/5	1/3	3	5	3	5	3	3	Х

Valeurs en bleu: version urgence

Valeurs en noir: version durable pour l'environnement (scénario d'une éventuelle relocalisation)

Distance parcourue: 0,2887, Eau: 0,2307, Frontières: 0,1615, Routes: 0,1110, Pente: 0,0663, Altitude: 0,0530,

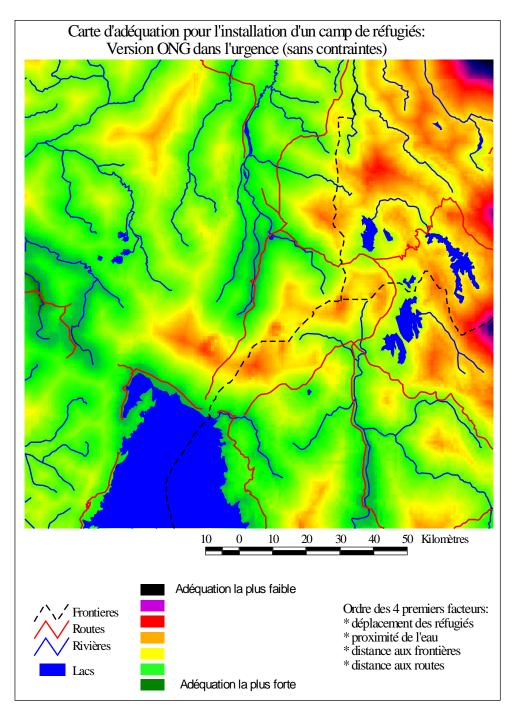
Parcs: 0,0328, Villes: 0,0211, Forêts: 0,0181, Population: 0,0168

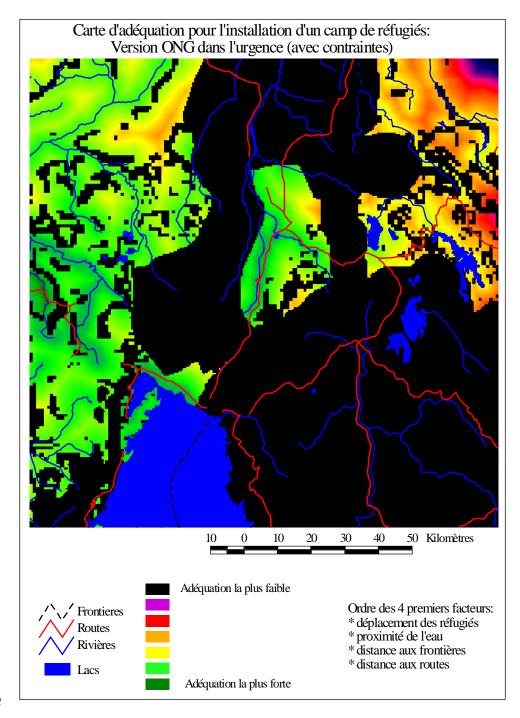
Eau: 0,2845, Frontières: 0,2067, Routes: 0,1449, Parcs: 0,0895, Pente: 0,0622, Altitude: 0,0622, Distance

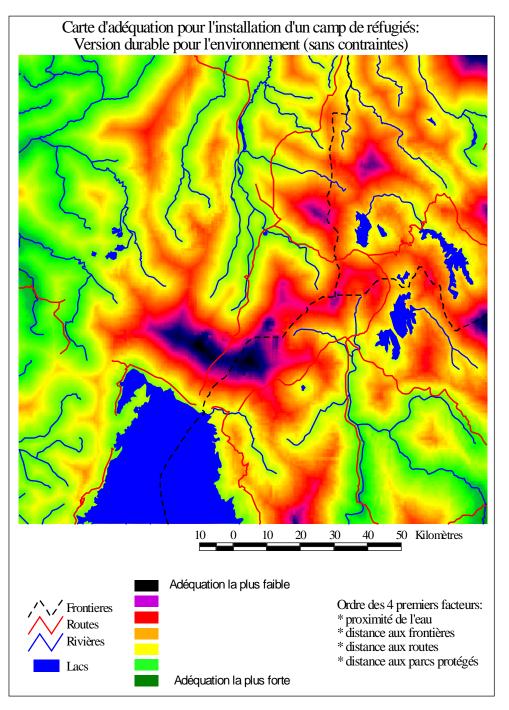
parcourue: 0,0566, Forêts: 0,0413, Villes: 0,0290, Population: 0,0230

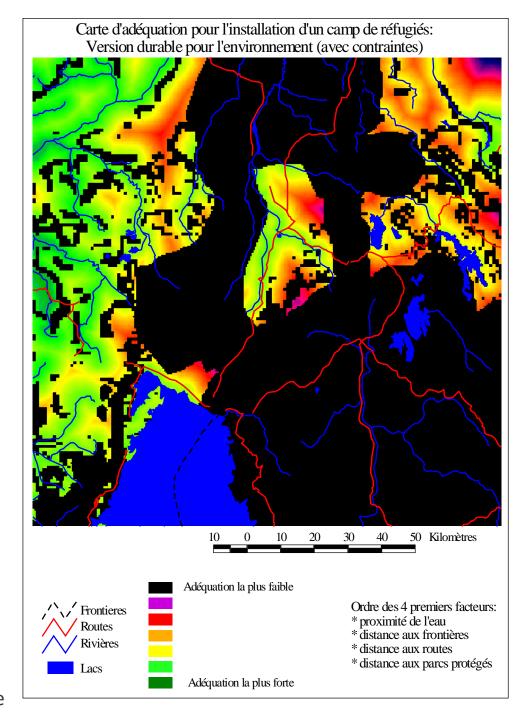
Résultats

• Synthèse: cartes d'adéquation selon le scénario choisi


• Somme pondérée des facteurs multipliée par le produit des contraintes


$$S = \sum_{i} w_{i} x_{i} * \prod_{j} c_{j}$$


 x_i : facteurs


w_i: poids

 c_i : contraintes

Analyse multicritère

Exemple : Fixer des priorités pour le déminage

- Exemple : Croatie
- Problématique: nombreuses zones suspectes d'être minées mais ressources limitées > nécessité de fixer des priorités pour le déminage
- Méthode: PROMETHEE II (Preference Ranking Organization METHod for the Enrichment of Evaluations)
 - Méthode d'aide à la décision visant ici à établir un classement des zones à déminer (1 = à déminer en premier lieu, 2= à déminer en deuxième lieu...)
 - Résultat variable selon l'importance accordée aux différents critères par les décideurs
- Application WebGIS
 - 4 groupes de critères: type de terrain et d'infrastructures, coût, impact socio-économique, réduction du risque lié à la présence de mines
 - Scénarios prédéfinis + possibilité de créer son propre scénario

http://31.147.204.82/webgis/tiramisu/#/Home